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is nearly constant. The decay of peak tangential velocities
given in Eq. (4) is substantiated by empirical results.
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A Closed-Form Solution to Oblique
Shock-Wave Properties

VincenT R. Mascrrrr*
NASA Langley Research Center, Hampton, Va.

HIS Note is concerned with the direct computation of
oblique shock-wave properties with freestream Mach num-
ber and flow-deflection angle as the independent variables.
The equations governing oblique shock relations may be
written in the form
sin®@ + b sin?0 + csin? 4-d = 0
where

_ M2+ 2 -
b = —[—M ] v sin%

¢ = 2Me2 + O)/MA 4+ [(v + D4 + (v — 1)/M;2] sin%

d = — cos?/M*
and
# = shock-wave angle
M, = freestream Mach number
& = deflection angle
v = ratio of specific heats

which is cubie in sin?6, having three real roots, the smallest of
which results in a decrease in entropy.

Contrary to the statement of Ref. 1, that no convenient
explicit relation exists for this case, there is indeed a general
solution for a cubic. The mathematical derivation can be
found in Ref. 2. From Ref. 2, the solution for a cubic having
three real roots is

sin?f = —b/3 + 2 (b2 — 3¢)V2 cos[(¢ + nw)/3]
where
cosp = (Jbc — b® — FHd)/(b? — 3c)¥/?

and n = 0 corresponds to the strong shock solution; n = 2
results in a decrease in entropy; and n = 4 corresponds to
the weak shock solution. Although many readers may be
aware of this solution, the wide use of iteration schemes to
solve this problem has prompted the author to set down the
explicit solution in general terms.
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Free Vibration of Simply Supported

Parallelogrammic Plates

SoMAYAIULU DUuRvasuLa®
Indian Institute of Science, Bangalore, India

Nomenclature

dimensions of the plate, see Fig. 1a

plate rigidity, Eh%/12(1 — »?)

Young’s modulus of the material of the plate

plate thickness

frequency parameter, (ph/D)?wa?/x?

frequency parameter of membrane, (u/S) %00 /%

number of half sine waves in the two directions z; and
Y1, respectively

uniform tension per unit length of stretched membrane

rectangular coordinate system defined in Fig. 1a

oblique coordinates defined in Fig. 1a

mass density of the plate material

angle of skew, defined in Fig. 1a

frequency of oscillation in rad/sec

mass per unit area of membrane

Poisson’s ratio
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Introduction

N this Note, the results of numerical calculations for the
first few frequencies of simply supported parallelogrammic
plates, using the Rayleigh-Ritz method employing double
Fourier sine series in oblique coordinates, are presented.
Interesting features, hitherto unreported in the literature, such
as 1) the skew angle splitting the degenerate frequencies of
rectangular plates to distinet ones and 2) the “frequency
crossing’’ of the modes of simply supported skew plates, are
discussed. In fact, it has been shown in Ref. 1 that these fea-
tures are also exhibited by clamped skew plates.

The literature does not contain adequate results for the
frequencies of simply supported parallelogrammic plates.
Conway and Farnham? calculated only the fundamental fre-
quency for a few configurations of the plate by point match-
ing, using & mathematical relationship that exists between the
problems of a simply supported polygonal plate and a poly-
gonal membrane of the same geometry.*=® This relationship
shows that the eigenvalues of the plate are squares of the
eigenvalues of the membrane, whereas the eigenfunctions are
identical. Weinstein® reports the upper and lower bounds of
the frequencies of modes symmetric about both the diagonals
of rhombic membrane, which have been calculated by Stadter”
in an unpublished report. These values serve admirably for
comparison with the results of simply supported rhombic
plates on the basis of the aforementioned relationship.

Details of Solution

The vibration problem becomes a particular case of panel-
flutter problem of simply supported parallelogrammic panels,
which is discussed in detail in Ref. 8. Consequently, the
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Table 1 Comparison of the frequencies k = (oh/D)"*wa?/7? of rhombic simply supported plate (for modes which are
symmetric about both the diagonals)

Skew angle ¢

Mode Nature of
no. Authors solution 15° 30° 45°
Stadters Lb.? 2.1137 2.5210 3.5170
tadter wh.¢ 2.1147 2.5245 3.5287
1 s Re .. 2.519 ...
Conway and Farnham P 2119 2 402 3 934
Present Note u.b. 2.133 2.630 3.926
Stadt Lb. 7.9960 8.4807 10.143
2 adier wb. 8.0126 8.5061 10.191
Present Note ub. 8.078 8.739 10.90
Stadt 1.b. 11.018 14.186 18.659
30 adter ub. 11.038 14.274 18.941
Present Note wb. 11.08 14.59 20.42

2 Stadter’s results are as quoted in Ref. 6.
& Lb. ~ lower bound.

¢ u.b. ~ upper bound.

¢ Ref. 2.

¢ R ~ Rhombic plate analysis.

S P ~ Parallelogram plate analysis.

9 Mode 3 of the doubly symmetric group eorresponds to mode 6 for ¢ = 15°, mode 7 for ¢ = 30°, and 45° of the complete spectrum.

mathematical development is left out for the sake of brevity
and only the final results are presented in this Note. The re-
sulting matrix equation of the vibration problem splits into
two sets, the even (E) set and the odd (O) set, representing
modes that are skew symmetric and skew antisymmetric, re-
spectively.? The eigenvalues and eigenveetors of the two
separate matrix equations of half the order ave calculated,
and the complete spectrum is obtained by considering the two
spectra together and arranging them in the ascending se-
quence.

Results and Discussion

Numerical caleulations for the first few frequencies have
been made for plates with side-ratio a/b equalto 1,2, 4 and
and with ¢ varying from 0° to 50°. In a majority of the
cases, the number of terms was taken up to 4 = 6, N = 6;
this results in matrices of order 18 X 18 each for both the
even and the odd cases. All the values are given in terms of
the parameter k. The tables giving these results being
lengthy are not reported in this Note; they may be found in
Ref. 9.

A detailed examination of the convergence is made. In
general, it is found that convergence becomes slow for ¢ =
45°, as may be expected; further, it tended to be the slowest
for a/b = 1. The convergence of the first four modes for
a/b = 1 and %, and of the first five modes for a/b =  is
essentially satisfactory up to a skew angle of 45°. Accord-
ingly, the results for only these modes have been presented in
the form of graphs showing the variation of the frequencies
with the skew angle. Where the convergence is felt to be
slightly less satisfactory, the curves have been shown in
dotted lines. An assessment of the aceuracy is possible by
a comparison with Stadter’s results for membranes, and using
the plate-membrane relationship.

Stadter’s results (as quoted in Ref. 6) are only for modes
which are symmetric about both the diagonals, whereas the
present calculations include all the four symmetry groups of
the rhombus. Thus, a given mode (other than the funda-
mental) of the doubly symmetric group corresponds to a
higher mode of the complete spectrum in which the modes
have all been numbered in the ascending order of their
frequencies.

In Table 1, the values of the frequency parameter & for the
rhombic simply supported plate are given along with the
squares (k.? of the frequency parameter of rhombiec mem-
brane obtained by Stadter. The fundamental frequency
caleulated by Conway and Farnham using rhombic plate and

parallelogrammic plate analyses are also given. The third
mode of the symmetric-symmetric group of Stadter corre-
sponds to the sixth mode for ¢ = 15° and the seventh mode
for ¢ = 30° and 45° of the complete spectrum, Tt is seen
that the maximum discrepancy for a skew angle of 30° is of
the order of 49,. TFor a skew angle of 45°, it is of the order
of 119. While the point-matching results of Conway and
Farnham? for the fundamental frequency alone of rhombic
plates by the rhombic-plate analysis compare favorably, the
results obtained by the parallelogram-plate analysis are not
as accurate. The values of the fundamental frequencies for
parallelogrammic plates by the latter analysis tend to be even
less accurate.

The variation of the natural frequencies with the skew angle
are shown in Figs. 1a-le. The mode number and the group
even (F) or odd (O) to which it belongs are also indicated.
In the inset of the graphs, the modes which are erossing,
the skew angle at crossing (obtained by linear interpolation),
and the corresponding & are all given.

In Fig. 1a for a/b = 1, the modes labelled 2 and 3 are the
degenerate modes (m = 2,n = 1; m = 1, n = 2) having the
same frequency £ = 5 in the casc of the square plate (¢ = 0°).
It is interesting to notice that with even a small angle of skew,
this degeneracy (or multiplicity) disappears and they be-
come modes with distinet frequencies. These modes belong
to the odd group, i.e., they are skew antisymmetric. Sim-
ilarly, the skew angle splits the degeneracies of the modes 5,
6, 7, and 8 (not shown in the graph).

The second interesting feature is the frequency crossing.
Oune notices that the order of the modes 3, 4 belonging to the
odd and even groups, respectively, gets interchanged. This
oceurs at a skew angle of 40.5°.  Similar erossings take place
between higher modes. Such crossings of frequency curves,
representing the variation of frequency with side-ratio, of
modes belonging to different symmetry groups for rectangular
clamped plates® and cantilever plates'! exist. The crossing
of curves showing the variation of frequency with the angle
of skew of the modes of skew cantilever plates are known
also, 12,18

Figure 1b shows the variation of the frequencies of the
first four modes for a/b = 3. Modes 3 and 4 cross at ¢ =
22.67°. Figure 1c¢ shows the variation of the frequencies of
the first four modes for a/b = . Again, modes 5 and 6 (not
shown) which are degenerate for ¢ = 0° are split into two
distinet ones by the skew angle. Thus, it is seen that the
introduction of a slight asymmetry into a system with in-
herent symmetry removes the degeneracies possessed by that
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Fig. 1 Variation of natural frequencies with angle of
skew.

system. Figure 1d shows the variation of the frequencies of
of the first five modes for a/b = 4.

Tt is interesting to observe that, while the skew angle tends
to split the degeneracies of the modes of rectangular plates on
one hand, it does bring about other degeneracies between dif-
ferent modes at certain other values corresponding to the
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frequency crossings. That is to say, the frequency crossings
are degeneracies, since two different modes have the same
frequency. Further, one observes that the frequency cross-
ings are always between a pair of modes belonging to the
opposite groups, even and odd.
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Maximum Stress of a Stiffened
Circular Cylinder under Bending
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The Boeing Company, Seattle, Wash.

Nomenclature

cross-sectional area of the stringer, in.2

stringer spacing, in.

Young’s modulus of the skin, psi

distance from the neutral axis to the center of the cylinder,
in.

bending moment, lb.-in.

radius of the circular cylinder, in.

skin thickness, in.

@

o

SN

~
I

Received April 25, 1968; revision received August 26, 1968.
The author thanks Chun Li of The Boeing Company for his
help in the programming.

* Research Specialist A, Stress Analysis Research, Structures
Staff, Commercial Airplane Division.



